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Osborne et al. �Phys. Rev. E 74, 036309 �2006�� suggested that our conclusions on the ability of kinematic
simulation to represent the t3 Richardson law �Thomson and Devenish, J. Fluid Mech. 526, 277 �2005�� were
an artifact of our choice of time step. Here we repeat some of the simulations with a small fixed time step,
enabling us to confirm that our previous study was not compromised by the variable time step used.

DOI: 10.1103/PhysRevE.80.048301 PACS number�s�: 47.27.E�, 47.27.Gs

Recently we argued that, in kinematic simulation of three-
dimensional turbulence with an inertial subrange spectrum,
the mean-square pair separation does not follow the Richard-
son law �r2���t3 expected in real flows �see Ref. �1��. �Here
� is the notional energy dissipation rate per unit mass in the
kinematic simulation, r is the particle separation, and t is
time.� Instead we argued that, because of the lack of “sweep-
ing” �i.e., advection� of the small scale modes by larger
modes in kinematic simulation, the separation should, in the
limit of a long inertial subrange, grow like t6 if a strong mean
flow is present and like t9/2 for no mean flow. These predic-
tions were supported by numerical simulations. Note that, by
a strong mean flow, we mean that a strong mean flow is
simply added to the velocity field without advection of the
eddies by the mean flow. This is clearly unrealistic but exag-
gerates the sweeping problem and is useful to help under-
stand the limitations of kinematic simulation as a realistic
model for turbulence.

The simulations which were carried out in support of our
arguments used an adaptive time step in calculating the par-
ticle pair trajectories. This time step was determined sepa-
rately for each pair and depended on the pair separation. A
justification was offered for the choice of time step: the ed-
dies much smaller than the pair separation have negligible
effect on the separation process and so do not need to be
resolved by the time step. We believe this is correct and it
was supported by some simulations using a fixed time step
small enough to resolve the smallest eddies. However, these
simulations, for reasons of computational cost, extended over
only a small fraction of the time required for the pair sepa-
ration to reach the integral scale.

Osborne et al. Ref. �2� present simulations with adaptive
and fixed small time steps which show significant differences
and conclude that our results may be compromised by our
choice of time step. See also the discussion in Refs. �3,4�. In
this Comment we repeat �i� some of the simulations of Ref.
�1� with the adaptive time step replaced by a fixed small time
step and �ii� the relevant simulations of Ref. �2�, in order to
test Osborne et al.’s conclusion.

The method used to generate the random flows is identical
to that used in Ref. �1�. The resulting flows are superposi-
tions of independent random Fourier modes with an energy
spectrum proportional to �2/3k−5/3 for 2� /L�k�2� /�,
where k is the wave number and L and � are proportional to
the integral length scale and the Kolmogorov dissipation
length scale, respectively. In some simulations a mean veloc-

ity �Ū ,0 ,0� is added to the flow. In the following we use �u

to denote the rms value of any one component of the velocity
fluctuations and � to denote the time-dependency parameter
�defined in Ref. �1��.

Particle pairs are released with separation r0 and tracked
through the flow using a forward Euler method. In the adap-
tive time-step simulations presented in Ref. �1�, the time step
was given by

�t = min�0.1
min�r,L�

max�Ū,�u�
, 0.01

�min�r,L��2/3

��u/L1/3 	 . �1�

Reference �1� argued that this time step is small enough to
resolve the changes in particle velocity due to �i� the sweep-
ing of particles through the eddies that dominate the separa-
tion process and �ii� the temporal change of such eddies
caused by � �note that the time scale for sweeping a pair with

separation r through an eddy of size �r, i.e., r /max�Ū ,�u�,
is, for r	L, much smaller than the expected time scale of the
physics in real Navier-Stokes flows, which is of order
r2/3 /�1/3�. Also Ref. �1� presented some sensitivity tests and
comparisons with short-duration fixed-time-step simulations
in support of the choice of time step. The longer-duration
fixed-time-step simulations presented here �we call these the
“new” simulations below� are designed to test this more rig-
orously. For these simulations, we use a time step given by

�t = min�0.1
�

max�Ū,�u�
, 0.01

�2/3

��u/L1/3	 . �2�

This should be small enough to resolve the effect of even the
smallest eddies throughout the evolution of the pair separa-
tion.

For the adaptive time-step simulations presented in Ref.
�1�, a number of pairs were tracked in each realization of the
flow. For the new fixed time-step versions of these simula-
tions we only follow one pair in each realization of the ve-
locity field to maximize the statistical accuracy for the avail-
able computing time �following a pair is far more expensive
than generating a flow field, and so it makes sense to ensure
the pairs are completely independent�.

Figures 1 and 2 show comparisons between the adaptive
time-step simulations presented in Ref. �1� and the new fixed
time-step simulations for two frozen flow cases. Although
the new simulations cover a shorter time than the adaptive
time-step simulations, they extend a decade further than the
fixed time-step simulations of Ref. �1� and are long enough
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for �r2� to reach the point of transition toward a diffusive
regime proportional to t. There is significant noise in the new
simulations because the computational cost limits the num-
ber of pairs we can follow. However, the results are close
enough �on the log-log plots� to those with the adaptive time
step to confirm that the deductions about power-law behavior
made previously were not compromised by the use of an
adaptive time step. Note the results with a strong mean flow
in Fig. 1 do not show a clear t6 power law. However, taken
with the other evidence given in Ref. �1�, which includes
simulations with even smaller values of r0 /L and/or � /L, it
provides support for t6 being approached asymptotically as
the inertial subrange becomes very long �see discussion in
Ref. �1��. Comparisons were also made �not shown� corre-
sponding to the unsteady cases with �=5 in Figs. 10, 15a,
and 15b of Ref. �1�. These show a similar degree of agree-
ment between the adaptive and fixed time-step simulations.

Figure 3 shows results with adaptive and fixed small time

steps for a case with smaller L /� �104� which is similar to
the case in Figs. 1, 2, and 4 of Ref. �2�. For the fixed time-
step simulation, Ref. �2� uses a slightly smaller time step
than Eq. �2�. We follow Ref. �2� here, replacing the first term
in Eq. �2� by 0.01�−1/3k�

−2/3 which, for L /�=104, can be re-
expressed as 0.0724� /�u, where we have taken C�


�L /�u
3=2 /3 as assumed �5� in Ref. �2�. For the adaptive

time step simulation, Ref. �2� uses a slightly larger time step
than Eq. �1� �it would be the same with C�=1� but we retain
Eq. �1� as we are more interested in the performance of our
adaptive time step and, in any case, the difference is always
less than 15%. In contrast to Ref. �2� we find no significant
differences between the simulations. Figure 3�a� shows that
�r2� grows with an exponent somewhere between 3 and 9/2.
Figure 3�b� shows the effective eddy diffusivity which has
behavior intermediate between �r2�2/3 and �r2�7/9, consistent
with Fig. 3�a�. We believe these results are a consequence of
the limited inertial subrange and we expect the results to
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FIG. 2. Comparison of adaptive �dashed; from Ref. �1�, Figs. 12
and 13� and fixed time-step �solid� simulations for the case with no

mean flow and frozen turbulence. Parameters: Ū=0, � /L=10−8,
r0 /L=10−7, 1600 modes, and �=0. The adaptive �fixed� time-step
simulation used 20 �80� realizations of the flow with 125 �1� pairs
per realization.
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FIG. 3. Comparison of adaptive �dashed� and fixed time-step �solid� simulations for a case similar to that of Ref. �2� �a� shows the

evolution of �r2� while �b� shows the effective eddy diffusivity. Parameters: Ū=0, � /L=10−4, r0 /L=10−5, 100 modes, and �=0.5. The
simulations used 100 realizations of the flow with 125 pairs per realization.
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FIG. 1. Comparison of adaptive �dashed; from Ref. �1�, Figs.
1�a� and 5� and fixed time-step �solid� simulations for the case with

a strong mean flow and frozen turbulence. Parameters: Ū /�u=10,
� /L=10−6, r0 /L=10−5, 1200 modes, and �=0. The adaptive �fixed�
time-step simulation used 5 �100� realizations of the flow with 125
�1� pairs per realization.
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approach t9/2 and �r2�7/9 as L /�→
 �for fixed � and r0 /��.
The shape of the �r2� curve in Fig. 3�a� agrees well with

that obtained with a fixed time step in Ref. �2� �the lack of
quantitative agreement is probably only due to a scaling
error—such an error is likely, at least along the ordinate �5��.
In addition the diffusivity results agree quite well with the
results in Fig. 2 of Ref. �2� although the latter curve has more
curvature at intermediate times. However, we cannot repro-
duce the significantly different results obtained in Ref. �2�
when the fixed time step is replaced by an adaptive time step.
In order to eliminate the possibility that our numerical
method is not sufficiently accurate, and that this explains the

differences from Ref. �2�, we repeated the case shown in Fig.
3 using a fourth-order Runge-Kutta method. The results �not
shown� showed no significant differences �for both the fixed
and adaptive time steps�.

To summarize, we have investigated the suggestion made
by Ref. �2� that the results on pair dispersion in kinematic
simulations which we presented in Ref. �1� may be compro-
mised by the use of an adaptive time step. We have con-
ducted some further simulations with a fixed �small� time
step to test this suggestion. These simulations show no sig-
nificant differences from the adaptive time-step simulations
indicating that our results were not compromised in this way.
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